当前位置:首页 > 百科 > 正文内容

6000亿美元资金缺口能压垮AI行业吗?

姜海莲8个月前 (07-09)百科38
印刷厂直印●彩页1000张只需要69元●名片5元每盒-更多报价➦联系电话:138-1621-1622(微信同号)

出品|虎嗅科技组

作者|余杨

编辑|苗正卿

头图|视觉中国

虎嗅注:本文为《硅谷正发生》第001篇稿件。《硅谷正发生》聚焦国外头部AI相关公司Open AI、Microsoft、NVIDIA等。本文以微软吉印通创始人比尔・盖茨动态为引,讨论AI行业的盈利能力相关问题。

7月5日消息,微软吉印通创始人比尔・盖茨(Bill Gate)作客《下一个伟大构想》(the Next Big Idea)播客,讨论了对超人类人工智能(Superhuman AI)和技术进步的构想,同时表示现在AI 市场的狂热程度远超互联网泡沫。

盖茨认为当前 AI 领域的准入门槛非常低,且整个市场处于狂热期,AI 初创公司可以比较轻松地拿到数亿美元的融资,甚至还有人为一家公司筹集了 60 亿美元(约 437.34 亿元人民币)现金。

“如此多的资本扎堆涌入新领域是前所未见的,无论从市值以及估值角度来看整个 AI 市场已经陷入‘狂热’状态,其程度让历史上互联网、汽车时期的狂热相形见绌。”盖茨这样说到。

现阶段的人工智能行业发展迅猛,是名副其实的吸金产业,英伟达市值也因此高歌猛进,并在当地时间6月18日总市值达到3.34万亿美元,一举超越微软、苹果公司,成为全球市值最高的上市企业。但事实上,对人工智能领域的质疑声也此起彼伏,从未停止过。

人工智能的 6000 亿美元问题

红杉资本合伙人兼首席运营官David Cahn曾在去年9月发布过一篇《人工智能的2000亿美元问题》的文章,6月20日,他针对目前的情况更新了自己的看法。

在2023 年 9 月的《人工智能的2000亿美元问题》文章中,David Cahn主要提出了一个问题:“收入在哪里?”

问题的逻辑是,英伟达的盈利指南和随后的强劲表现表明对 GPU 和人工智能模型训练的需求水平是无止境的,但这些 GPU 都有什么用?客户的客户是谁?需要创造多少价值才能让如此快速的投资获得回报?

GPU 的最终用户(例如星巴克、X、特斯拉、Github Copilot 或新创业公司)也需要赚取利润。假设他们需要赚取 50% 的利润,这意味着对于当前 GPU 资本支出的每一年,这些 GPU 需要创造 2000 亿美元的终生收入才能偿还前期资本投资。

这些资本支出中有多少与真正的终端客户需求相关,又有多少是为满足未来终端客户需求而建设的?这是一个价值 2000 亿美元的问题。

David Cahn注意到 AI 基础设施建设所隐含的收入预期与 AI 生态系统的实际收入增长之间存在巨大差距,而 AI 生态系统的实际收入增长也是终端用户价值的代表。概言之,David Cahn对AI的盈利能力抱有疑虑,投入和产出存在2000亿美元的差额,认为“按今天的水平,每年的资本支出都至少需要填补 1250 亿美元的缺口。”

随着英伟达成功跻身全球最有价值公司行列,David Cahn按照去年9月的数据框架再次进行了估算,结果是:AI 的 2000 亿美元问题现在变成了 AI 的 6000 亿美元问题。

图片来自sequoia

David提醒我们注意:直接计算这个指标很容易。你所要做的就是将 Nvidia 的运行率收入预测乘以 2 倍,以反映 AI 数据中心的总成本(GPU 占总拥有成本的一半,另一半包括能源、建筑物、备用发电机等)。然后你再乘以 2 倍,以反映 GPU 最终用户的 50% 毛利率(例如,从 Azure 或 AWS 或 GCP 购买 AI 计算的初创公司或企业,他们也需要赚钱)。

自 2023 年 9 月以来发生了什么变化?

David Cahn认为,2023 年末是 GPU 供应短缺的高峰期,但目前的供应短缺已经消退。同时,GPU 库存不断增长,Nvidia 在第四季度报告称,其数据中心收入的一半左右来自大型云提供商。仅微软一家就可能占Nvidia 第四季度收入的约 22%。超大规模资本支出正在达到历史水平。进而,一旦库存足够大以至于需求下降,就会成为重置的催化剂。

另外,OpenAI 仍然占据着 AI 收入的最大份额,The Information 最近报道称,OpenAI 的收入现在为34 亿美元,高于 2023 年底的 16 亿美元。但许多初创公司仍然与OpenAI 的差距很大,消费者今天真正使用了多少 AI 产品还很难说,这也意味着AI 公司需要为消费者提供源源不断的价值,才能长远发展。

在最后的分析中,David Cahn慷慨地假设谷歌、微软、苹果和 Meta 每年都能从新的 AI 相关收入中产生 100 亿美元。还假设甲骨文、字节跳动、阿*、腾讯、X 和特斯拉每年都有 50 亿美元的新 AI 收入。但即使这仍然是正确的,并且在名单上再添加几家公司,1250 亿美元的缺口现在也会变成 5000 亿美元的缺口。

David Cahn还提到——B100 即将问世: 今年早些时候,Nvidia 宣布推出 B100 芯片,其性能提升了 2.5 倍,而成本仅增加了 25%。我预计这将导致 Nvidia芯片需求的最终激增。与 H100 相比,B100 的成本与性能相比有了显著的改善,而且由于每个人都想在今年晚些时候买到 B100,因此很可能再次出现供应短缺。

人工智能接近泡沫了吗?

当然,对人工智能看涨的观点也不少,一个主要的反驳就是“GPU 资本支出就像修建铁路”,最终火车会开过来,目的地也会到来——新的农业出口、游乐园、购物中心等。

对此,David Cahn认为这种观点忽略了一些关键因素:

首先是GPU缺乏定价权:在物理基础设施建设的情况下,您正在建设的基础设施具有一些内在价值。如果您拥有旧金山和洛杉矶之间的轨道,那么您可能拥有某种垄断定价权,因为 A 地和 B 地之间只能铺设这么多轨道。在 GPU 数据中心的情况下,定价权要小得多。GPU 计算正日益成为一种按小时计量的商品。与成为寡头垄断的 CPU 云不同,构建专用 AI 云的新进入者继续涌入市场。在没有垄断或寡头垄断的情况下,高固定成本 + 低边际成本的企业几乎总是会看到价格竞争到边际成本(例如航空公司)。

其次是投资浪费:即使是铁路行业,以及许多新技术行业,投机性投资狂潮也常常导致高额的资本浪费。《推动市场的引擎》是技术投资方面最好的教科书之一,其主要观点是,许多人在投机性技术浪潮中损失惨重。挑选赢家很难,但挑选输家要容易得多。

另外是折旧问题:半导体趋于越来越好,Nvidia 将继续生产更好的下一代芯片,如 B100。这将导致上一代芯片的折旧速度加快。由于市场低估了 B100 和下一代芯片的改进速度,因此它高估了今天购买的 H100 在 3-4 年后的价值。但铁路这种物理基础设施不存在这种相似性,它不遵循任何“摩尔定律”类型的曲线,因此成本与性能的关系不断改善。

最后,David Cahn认为我们需要仔细研究赢家和输家。在基础设施建设过剩的时期,总会有赢家。人工智能很可能是下一波变革性技术浪潮,GPU 计算价格的下降实际上有利于长期创新,也有利于初创企业。如果预测成真,创始人和公司建设者将继续在人工智能领域发展——他们将更有可能取得成功,因为他们将受益于较低的成本和在这一试验期间积累的经验。但投资者可能会遭受伤害。

无独有偶,盖茨在访谈节目中也提到,目前 AI 领域的竞争非常激烈,而且不断有新选手入场,微软固然拥有很多资本,但并没有真正阻止其他人在基础能力或垂直领域的发展。盖茨表示,人工智能技术在全球经济中所占的份额虽然相对较小,但其潜力巨大,即使是小型机构也能借助这些工具与大型机构竞争,并提供更优质的服务。

正如David Cahn所总结的那样,我们正在经历一场可能定义一代人的技术浪潮,在未来很长一段时间内,像 Nvidia 这样的公司很可能在生态系统中继续发挥关键作用,但专注于为最终用户提供价值的公司创建者才会获得丰厚的回报。

人工智能泡沫正达到临界点,前面的道路将是漫长的,它会有起有落,把握下一步发展方向至关重要。

021yin.com

正在改变与想要改变世界的人,都在虎嗅APP

收藏0

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。