当前位置:首页 > 百科 > 正文内容

超复杂的不定积分问题,老黄怕你看了会头晕,先提个醒

阿克苏图文店2年前 (2023-03-20)百科20
印刷厂直印●彩页1000张只需要69元●名片5元每盒-更多报价➦联系电话:138-1621-1622(微信同号)

当m,n都是大于1的正整数时,正割的m次方乘正弦的n次方的不定积分,或余弦的m次方乘余割的n次方的不定积分怎么求?

这是一个很复杂的问题,需要分很多种情况来讨论。当m和n相差一个偶数时,问题相对会比较简单一点。我们可以利用余弦的m次方乘正弦的n次方的不定积分递推公式来解决这种情况下的问题。

其实正割的m次方,就是余弦的-m次方,而余割的n次方,就是正弦的-n次方。运用上面的公式就可以推出最后的公式。

公式具体的推导过程,在《老黄学高数》系列学习视频第278讲中有介绍,就不再赘述。这里要探究的是当m,n相差一个奇数时的公式。它的情况要比相差一个偶数时复杂四倍以上。因此,这篇文章只介绍其中当mn时,正割的m次方乘正弦的n次方的不定积分公式的推导。

就算这样,也还要分n的奇偶性两种情况,当n=2km时,我们可以利用正弦的降幂递推公式,一直把正弦的指数降到等于0,就得到一个含有正割正整数幂的不定积分的式子,这个不定积分在《老黄学高数》第268讲和第275讲都有详细的推导。而其它各项可以概括进一个求和公式中。关键的问题是要把各项的系数理清楚,这是一个很有技术含量的活。推导过程和公式都只能以图片的形式展示如下:

尝试解一道例题:例1:求∫(secx)^7(sinx)^4dx.

本文中所有例题的结果老黄都已经检验过了。你也可以检验一下,挺能锻炼这方面的计算能力的。这里有一种特殊的情况,当m-n=1时,公式需要进行适当的调整。关键是当m-n=1时,分子中的因式m-n-2=-1, 而(-1)!!在这里是没有意义的。其实(m-n-2)!!的存在是为了约掉(m-2)!!中小于(m-n)的因数,而当m-n=1时,并不存在这样的因数,所以要去掉(m-n-2)!!.

再来一道例题:例2:求∫(secx)^5*(sinx)^4dx.

而当n=2k+1m时,并无法通过降幂把正弦的指数降为0,只能降到1,得到(secx)^m*sinx的不定积分相关的式子。这个不定积分的原函数是(secx)^(m-1)x/(m-1). 因此直接代进公式中就可以了,其余部分与上一种情况几乎没有任何差别。

继续看例3:求∫(secx)^6*(sinx)^3dx.

同样的,这种情况下也有一个特例,就是当m-n=1时,分子中也不会出现因式(m-n-2)!!.

最后一道例题:例4:求∫(secx)^6*(sinx)^5dx.

将公式总结如下:

下一次,老黄再和大家分享nm的情形要怎么推导公式。肯定有人会吐槽老黄为什么要把情况分得这么细,是自找麻烦。那是因为如果不分得这么细的话,会出现阶乘中从正数乘到负数的情况,很难确定具体的阶乘。而且很容易出现分母为0没有意义的情况。而且公式明明就不同,自然几乎不可能统一推导了。假如强行统一,理论上也不是做不到。就是会比老黄分情况讨论烦得多得多得多。如果你能做到,老黄要对你顶礼膜拜。

不管怎么样?老黄会佩服你探究的精神。如果学数学能够有这样的探究精神,又何愁数学学不好呢!关键是要去探究哦,千万不要仅凭一张嘴!

收藏0
标签: n次贴图片

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。